
High-Confidence Computing 2 (2022) 100034

Contents lists available at ScienceDirect

High-Confidence Computing

homepage: www.elsevier.com/locate/hcc

User behaviour analysis using data analytics and machine learning to

predict malicious user versus legitimate user

Rohit Ranjan

a , ∗ , Shashi Shekhar Kumar b

a Innovaccer Analytics, Noida, UttarPradesh, India
b IIIT Allahabad, Prayagraj, Uttar Pradesh, India

a r t i c l e i n f o

Keywords:

Application security

Big data analytics

Machine learning

Random forest

Behavioral analysis

Prediction

a b s t r a c t

Research-based on user behavior analysis for authentication is the motivation for this research. We move ahead

using a behavioral approach to identify malicious users and legitimate users. In this paper, we have explained

how we have applied big data analytics to application-layer logs and predicted malicious users by employing

a Machine Learning algorithm based on certain metrics explained later in the paper. Machine Learning would

present a list of IP addresses or user identification tokens (UIT),deduced from live data which would be performing

a malicious activity or are suspected of malicious activity based on their browsing behavior. We have created an

e-commerce web application and induced vulnerabilities intentionally for this purpose. We have hosted our setup

on LAMP [1] stack based on AWS cloud [2] . This method has a huge potential as any organization can imply this

to monitor probable attackers thus narrowing down on their efforts to safeguard their infrastructure. The idea is

based on the fact that the browsing pattern, as well as the access pattern of a genuine user,varies widely with

that of a hacker. These patterns would be used to sort out the incoming traffic from and list out IP addresses and

UIT that are the most probable cases of hack attempts.

1

f

m

s

a

o

o

e

[

t

S

i

m

t

t

s

t

f

p

P

o

d

b

m

k

U

t

p

f

v

I

c

a

e

c

c

r

a

s

a

p

h

R

2

(

. Introduction

Applying big data analytics and machine learning on data obtained

rom application-layer logs would yield a list of probable candidates for

alicious attempts. Plenty of work has been done in the field of cyber

ecurity and data analytics, but in this paper, we have proposed a new

pproach to predict a list of probable hackers. This approach is based

n the application of Big Data Analytics with Machine Learning.

Abramson and Aha [3] proposed the idea of user identification based

n their web browsing behavior. It Not only identifies but also differ-

ntiates between users based on their web browsing behavior. Shi et al.

4] gave the idea of implicit authentication in which they proposed au-

hentication of users based on their behavior patterns. Al-Khazzar and

avage [5] proposed how user authentication can be performed by using

nformation collected from user behavior in reaction to a 3D Graphical

aze. Each user had a unique reaction to the graphical maze which was

he idea behind identification.

Frank et al. [6] investigated if a classifier can authenticate users con-

inuously based on the way users interact with the touchscreen of a

martphone. They have proposed a set of 30 behavioral touch features

hat can be extracted from touchscreen logs and demonstrated that dif-

erent users populate different sub-spaces of this feature space. In sim-

le words, it means every user has a different and unique touch pattern.

usara and Brodley [7] has presented an approach for re-authentication
∗ Corresponding author.

ttps://doi.org/10.1016/j.hcc.2021.100034

eceived 17 April 2021; Received in revised form 8 July 2021; Accepted 15 July 202

667-2952/© 2021 The Author(s). Published by Elsevier B.V. on behalf of Shandong

 http://creativecommons.org/licenses/by/4.0/)
f user based on the data collected from the computer mouse. Their un-

erlying hypothesis was that user behavior can be successfully modeled

ased on user invoked mouse movements as every user has a unique

ouse movement pattern. Bergadano et al. [8] presented a measure for

eystroke dynamics which limits the instability of biometric feature for

ser authentication through keystroke dynamics. This idea considered

he notion that every user has a unique keystroke dynamics or keystroke

attern.

Moritz et al. [9] presented behavioral profiling methods and systems

or authenticating the user. Zhauniarovich et al. [10] published a Sur-

ey paper about malicious domain detection using DNS Data Analysis.

t showed how analysis of data can yield behavioral information which

an be used further to gain critical information. Yang et al. [11] proposed

 secure model based on multi-cloud. This algorithm was used to upload

ncrypted data onto clouds and also, supporting SQL queries with en-

rypted data. In their model, they performed most computations in the

louds to increase query efficiency. Liu [12] talked about current secu-

ity requirements and corresponding engineering concepts, techniques,

nd approaches. Different research challenges were identified, and the

ecurity models and strategies for open data repositories were also ex-

mined. Al-Shomrani et al. [13] focused on privacy and security. He ex-

lained how Managing security policy is a challenge, which their frame-
1

 University This is an open access article under the CC BY license

https://doi.org/10.1016/j.hcc.2021.100034
http://www.ScienceDirect.com
http://www.elsevier.com/locate/hcc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.hcc.2021.100034&domain=pdf
https://doi.org/10.1016/j.hcc.2021.100034
http://creativecommons.org/licenses/by/4.0/

R. Ranjan and S.S. Kumar High-Confidence Computing 2 (2022) 100034

w

b

a

T

t

o

r

i

p

p

o

t

h

e

e

1

w

o

N

o

p

h

i

c

c

h

y

t

u

a

R

fi

b

1

a

Table 1

Symbols Used.

Symbols Description

𝜂 fills for training sets

𝜁 alternative method of fills for training data

𝜕 filling of missing value

𝜇 input types in fuzzing

𝜋 traffic from user agents

𝜅 Category 1 for Regression

𝜖 Category 2 for Regression

𝜎 Geo location identification for incoming traffic

1

f

t

F

2

A

L

r

B

p

2

v

r

w

&

l

b

S

2

r

S

m

m

c

m

a

w

d

𝐴

G

t
Nomenclature

𝛿 Number of Processes per services in Server

𝜔 Virtual Memory of Analytics Cluster

𝛼 Physical Memory for Analytics Cluster

𝛽 Shared Memory for Analytics Cluster

𝛾 Percentage of CPU

𝜃 Percentage of Memory

𝑀𝑎 Total Number of malicious Traffic

𝐿𝑒 Total Number of legitimate Traffic

𝑇 𝑜 Total Traffic on Server

𝐼 𝐴𝑀 Identity and Access Management

𝑃 𝑀

Prediction Model Testing after Testing

ork would handle for big data. He also advocated about privacy policy

eing flexible, integrated, context-aware, and customizable.

Lee et al. [14] has proposed a methodology to develop and deploy

 big data platform that can be used to collect, process, and store huge

erabytes of event and flow logs. More et al. [15] has proposed a new

hreat detection system that uses big data to analyze the cyber attacks

ver cloud networks in lesser time. Shiva et al. [16] has proposed a secu-

ity approach of game theory. In this approach author has considered the

nteraction between the attacks and the defense mechanisms as a game

layed between the attacker and the defender. Bhavani et al. [17] has

roposed a mix of the decision tree and random forest algorithms to

rder any strange conduct in the traffic of the system. So, once we in-

egrate Data Analytics findings with Machine learning (ML) we would

ave a system that is learning from life as well as historical data, and

ventually, at some point in time, it would be a system that would be

xtremely intelligent and robust.

.1. Motivation

In the literature listed above, all the proposed solutions and research

ork is focused on Network and Transport Layers,and those proposed

ver Application Layers were concerned with authentication only. In-

etwork and Transport Layer, information is in the form of Packets

r Segments and Datagram which is not in an effective stage to be

arsed as they are in crude form. Application layer information is in

uman-readable form and hence easier to parse for user behavior. Writ-

ng parsers for application-layer logs is a way more effective than pro-

essing Network and Transport Layer traffic. We are keeping our scope

onfined to the application layer in this research. Also, plenty of research

as been performed on behavioral authentication. The behavioral anal-

sis can be utilized for the greater good and not only limited to authen-

ication. In this paper, we propose a new method to predict malicious

sers from a legitimate users. This is achieved by applying big data an-

lytics and machine learning to application layer logs. We have used

andom forest for this research along with decision trees, binary classi-

cation, Clustering, and time series to compare the output to select the

est-suited approach.

.2. Research contribution of this work

Based on the information explained above, following contributions

re presented in this paper.

• Vulnerable application has been hosted on the internet which gen-

erates logs for our experiment and research.

• Big Data Analytics has been used to retrieve and contain big data

from the live data stream.

• After pulling out the application server logs,we apply Big Data An-

alytics with custom metrics to trace out the meaningful data which

can be put to use.
2
• Predictions from machine learning algorithm decision tree is applied

to live traffic.Then with a machine learning algorithm, the random

forest has been applied to it.

• Training data was used at first from logs of 48 hours which is later

tested using the subset of the same logs.

• After the maturity of this model, when this model is put on to live

traffic, we are able to attain 70% accuracy for the prediction of a

malicious user (Table 1).

.3. Organization

The road map of the paper is followed as:- System model and problem

ormulation are explained in Section 2 . The proposed scheme is illus-

rated in Section 3 . The performance evaluation is discussed in Section 4 .

inally, Section 5 concludes the article with future scope.

. System model and problem formulation

In this paper, we have used Big Data Analytics and Machine Learning

lgorithm to predict legitimate user and malicious user on Application

ayer logs generated by user browsing patterns by feeding our system

eal-time data sourced from our application launched on the internet.

efore the problem formulation, following definitions are used in the

roposal.

.1. Resources

To get a prediction, we have used the metrics which are most rele-

ant to user behavior. These metrics are extracted from server logs in

eal-time which contains the traffic generated by users browsing on the

eb application. Once these logs are parsed and fed to big data analytics

 machine learning prediction algorithm, we get a list of malicious &

egitimate users based on the IP and UIT. We are deducing the outcome

y identifying IP and UIT as they are easier to manage for any Network

ecurity team via a dashboard.

.1.1. Importance

Importance is given to variables which in our cases are the met-

ics based on which decision tree and later random forest would form.

o, we define Accuracy and Gini impurity for our model.There are two

easures of importance for each variable in a random forest.The first

easure is based on a decrease in accuracy when a variable is ex-

luded.Further,it can be broken down by outcome classes. The second

easure is based on the decrease of Gini impurity when a node is split

s per chosen variable. a) Accuracy: Accuracy for metrics in our model

ould be their precise nature of content after they are being parsed. We

efine accuracy (Acc) as provided below:

𝑐𝑐 =

𝑃 𝑎𝑟𝑠𝑒𝑑𝐷𝑎𝑡𝑎

𝑇 𝑜𝑡𝑎𝑙𝐷𝑎𝑡𝑎
× 100 ×

𝑑𝑎𝑡𝑎 = 𝑙𝑖𝑣𝑒𝑠𝑡𝑟𝑒𝑎𝑚 ∑
𝑑𝑎𝑡𝑎 =0

𝐿𝑜𝑔𝑠 (1)

Gini importance Every time a split of a node is made on variable m,the

ini impurity criteria for the two descendent nodes 𝑚 𝑐ℎ𝑖𝑙𝑑 is less than

he parent node.Adding up the Gini decreases for each variable over

R. Ranjan and S.S. Kumar High-Confidence Computing 2 (2022) 100034

a

d

𝐺

w

c

2

fi

v

i

N

w

v

∑

p

l

i

fi

p

𝑥

2

p

fi

E

w

𝐶

𝐶

𝜕

𝜕

a

2

s

n

c

d

a

𝑂

𝑐

𝑑

2

b

a

c

k

h

t

𝐸

𝐸

𝐸

2

i

t

𝐴

𝐴

3

l

t

b

d

p

i

v

o

b

i

t

a

o

o

3

a

s

w

l

w

3

i

p

t

o

f

𝑇

𝑇

𝑇
ll trees in the forest which gives fast variable importance. It can be

educed mathematically as given below:

𝑖𝑛𝑖 = 1 −

𝑚 ∑
𝑖 =1

(
𝑃 𝑖
)2

(2)

here, 𝑃 𝑖 is the probability of an object being classified to a particular

lass.

.1.2. Missing value replacement for the training set

Random forests have two ways of replacing the missing values. The

rst way has two modes. The first mode is fast and it says that if the

ariable m is not categorical,then a median of all the values is calculated

n class j and missing values are replaced with the same calculated value.

ow,if the variable m is categorical, then the missing values are replaced

ith the most frequently occurring value in class j. These replacement

alues are called fills represented as (𝜂).

𝑛

𝑖 =1

𝑣𝑎𝑙 1 + 𝑣𝑎𝑙 2 + ... + 𝑣𝑎𝑙 𝑛

𝑛
= 𝜂 (3)

The second way of replacing missing values is more expensive com-

utationally. It has given a better performance than the first, even with a

arge amount of missing data. This method replaces missing values only

n the training set.It begins by doing a rough, random, and inaccurate

lling of the missing values. Then it performs a forest run and computes

roximity. This is represented as (𝜁) as shown below:

 𝑚,𝑛 =

∑
𝑖 =1

𝑛 ← 𝑚𝑜𝑠𝑡𝑓𝑟𝑒𝑞 𝑢𝑒𝑛𝑡𝑛𝑜𝑛𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑣𝑎𝑙𝑢𝑒 = 𝜁 (4)

.1.3. Missing value replacement for the test set

When there is a test set, there are two different methods of re-

lacement depending on labels for the test set. If labels exist,then the

lls derived from the training set are used as replacements. Hence,

q. (3) would suit this case.

If labels do not exist, then each case in the test set is replicated 𝑛 𝑐𝑙𝑎𝑠𝑠 ,

here 𝑛 𝑐𝑙𝑎𝑠𝑠 = number of classes.

 𝑎𝑠𝑒 (𝐶) ⊆ 𝑇 𝑒𝑠𝑡𝑆𝑒𝑡 (𝑇) (5)

 𝑎𝑠𝑒 (𝐶) ← 𝑅𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑑 × 𝑛 𝑐𝑙𝑎𝑠𝑠 = 𝜕 (6)

Where, 𝜕 1 fills missing values in Class1.

 1 ← 𝐶𝑙𝑎𝑠𝑠 1 (7)

Where, 𝜕 2 fills missing values in Class1.

 2 ← 𝐶𝑙𝑎𝑠𝑠 2 (8)

nd so on the process continues till n.

.1.4. Unsupervised learning

In unsupervised learning, data consists of a set of x-vectors of the

ame dimension with no class labels or response variables.There is also

o figure of merit to optimize, hence leaving the field open to ambiguous

onclusions. The usual goal is to cluster the data. This is done if the

ata falls into different types and number of piles, each of which can be

ssigned some meaning.

 𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐷𝑎𝑡𝑎 ← 𝑑𝑎𝑡𝑎 1 (9)

 𝑟𝑒𝑎𝑡𝑒𝑆𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 𝐷𝑎𝑡𝑎𝑓𝑟𝑜𝑚𝑂 𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐷𝑎𝑡𝑎 ← 𝑑𝑎𝑡𝑎 2 (10)
𝑎𝑡𝑎 2 ← 𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 ← 𝑅𝑎𝑛𝑑𝑜𝑚 (11)

3
.1.5. Balancing prediction error

In some data sets, the prediction error between classes is highly un-

alanced. Some classes have a low prediction error while others have

 high. This occurs when one class is much larger than another. In this

ase, random forests try to minimize the overall error rate. This will

eep the error rate low on the large class while letting the smaller classes

ave a larger error rate (ER). Below Eq. (12) represents error rate for

rue case, and Eq. (13) gives false cases.

𝑅 𝑇 𝑟𝑢𝑒 =

𝑇 (𝑇 + 𝐹)
100

(12)

𝑅 𝐹𝑎𝑙𝑠𝑒 = 1 − 𝐸𝑅 𝑇 𝑟𝑢𝑒 (13)

 𝑅 𝑇 𝑜𝑡𝑎𝑙 =

𝐸 𝑅 𝑇 𝑟𝑢𝑒 + 𝐸 𝑅 𝐹𝑎𝑙𝑠𝑒

100
(14)

.1.6. Prediction accuracy

The ratio of the number of correct predictions to the total number of

nput samples determines its accuracy. Accuracy is also dependent on

he quality of datasets and the corresponding metrics.

 =

𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑐 𝑜𝑟𝑟𝑒𝑐 𝑡𝑝𝑟𝑒𝑑𝑖𝑐 𝑡𝑖𝑜𝑛𝑠

𝑇 𝑜𝑡𝑎𝑙𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
=

𝑇 𝑃 + 𝑇 𝑁

𝑇
(15)

 𝑃 𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = (∫
𝑖 = 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑠

𝑖 =0
𝐿𝑜𝑔𝑠 + ∫

𝑖 = 𝑚𝑖𝑛

𝑖 =0
𝐸𝑟𝑟𝑜𝑟 + 𝐴) × 100 (16)

. Proposed scheme

In this research, we are using big data analytics along with machine

earning to predict the malicious users. These users were identified by

heir IPs and User Identification Tokens(UIT), as per their suspicious

rowsing pattern. This idea is based on analyzing live traffic and pre-

icting malicious users in real-time before they commit any offence.This

roactive approach would prevent any attack or breach even before it

s about to happen. This model after reaching a maturity threshold is

ery effective and can be used to protect the assets of an internet-based

rganization. Any attacker before initiating an attack on an application

rowses it with the instincts of a hacker and hence browsing pattern

s entirely different from that of a legitimate user. The attacker’s mo-

ive is to exploit the application or corresponding infra or both, while

 simple user wants to use the application to fulfill his/her needs. So

ur proposed solution can detect an attacker as he/she performs recce

f application to attack, before initiating the real attack.

.1. Metrics

To get the prediction of server logs data, we have used metrics that

re most relevant to user behavior. These metrics are extracted from

erver logs which contain the traffic generated by users browsing on a

eb application. Once these logs are parsed, processed via a data ana-

ytics framework, and fed to a machine learning prediction algorithm,

e get the list of suspicious users from incoming source IPs or UIT.

.1.1. Time

User behavior for time decides if a user is trying to browse or a hacker

s fuzzing. This means the number of hits or calls generating from a

articular IP address or a user-specific token can be measured. A Hacker

ends to analyze the application at first and their hits would be low but

nce the analysis is done hits would exponentially rise but it’s vice versa

or a user.

 𝑖𝑚𝑒 ∝ 1
𝐻𝑎𝑐𝑘𝑒𝑟

, ∀𝐻𝑎𝑐𝑘𝑒𝑟 ∈ 𝑈𝑠𝑒𝑟 (17)

 𝑖𝑚𝑒 ∝ 𝑈𝑠𝑒𝑟, (18)

 𝑖𝑚𝑒 =

𝑡𝑖𝑚𝑒 = 𝑙𝑖𝑣𝑒 ∑
𝑇 𝑖𝑚𝑒 𝐵𝑟𝑜𝑤𝑠𝑒 + 𝑇 𝑖𝑚𝑒 𝐹𝑢𝑧𝑧 (19)
𝑡𝑖𝑚𝑒 =0

R. Ranjan and S.S. Kumar High-Confidence Computing 2 (2022) 100034

Fig. 1. Contents retrieved on parsing Application Layer logs.

3

fi

T

p

r

p

∑

3

p

a

p

p

𝑇

w

a

o

3

T

S

a

w

c

𝑊

w

𝑇

3

A

A

I

𝑃

3

m

i

t

𝐿

3

b

t

y

i

∫

3

p

c

s

T

W

𝜎

3

F

m

t

m

d
.1.2. Fuzzing

The methodology of passing different types of input to a parameter to

nd out how an application responds to various input types in fuzzing.

his won’t necessarily comprise of the payloads but different sets of ex-

ected and unexpected inputs for the application to assess how a server

esponds. This helps an attacker to understand the attack surface and

repare an attack vector. Where, 𝜇 represents input types in fuzzing.

∞

𝑖 =0
(𝜇𝑣𝑎𝑙𝑖𝑑 + 𝜇𝑖𝑛𝑣𝑎𝑙𝑖𝑑) = 𝐹 𝑢𝑧𝑧𝑖𝑛𝑔 (20)

.1.3. Timestamp

This metrics is used to find out the total number of incoming traffic

er IP or user ID in a given time interval. We used traffic per second

s a time interval to calculate T.S from each IP or user ID. For our ex-

eriment, the value of T.S was comparatively low but for public web

ortals, it has to be even less.

Deducing from Eqs. (17) and (18) , we conclude,

 .𝑆 =

∑∞
𝑡𝑖𝑚𝑒 =0 Δ𝐻 𝑖

𝑡𝑖𝑚𝑒 𝑝𝑒𝑟 𝑢𝑠𝑒𝑟
(21)

here, Δ𝐻 𝑖 is several hits on the portal, i shows the time per second,

nd 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟 𝑢𝑠𝑒𝑟 is the set of active users at an instance (per second) on

ur experimental portal.

.1.4. Payloads

Inbound traffic could also contain malicious payloads from attacker.

his makes it easier to detect and there are hundreds of solutions like

IEM solutions, available in market to detect these payloads. Also,there

re solutions to prevents from these attacks like Web Application Fire-

all. Logs containing WAF payloads are best source of metrics and they

an be used for training data.

 𝐴𝐹 =

∞∑
𝑖 =0

𝐿𝑜𝑔𝑠 𝑃𝑎𝑦𝑙𝑜𝑎𝑑𝑠 + 𝑇 𝑟 𝐷𝑎𝑡𝑎 (22)

here, 𝑇 𝑟 𝐷𝑎𝑡𝑎 is Training Data.

 𝑟 𝐷𝑎𝑡𝑎 =

∑
𝐾𝑛𝑜𝑤𝑛𝑃 𝑎𝑦𝑙𝑜𝑎𝑑𝑠 +

𝑡𝑖𝑚𝑒 = 𝑙𝑖𝑣𝑒 ∑
𝑡𝑖𝑚𝑒 =0

𝜌 (23)

.1.5. Malicious reputations

Incoming traffic from IPs is also marked based on their reputation.

 very know portal providing information about the reputation of IPs is
4
buseIPDB [18] . The probability of malicious users coming from flagged

Ps is very high.

 (𝑀) =

𝐹 𝑙𝑎𝑔 𝑔 𝑒𝑑𝐼𝑃

𝑇 𝑜𝑡𝑎𝑙𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔𝐼𝑃
(24)

.1.6. User agents

A lot of inbound traffic,particularly from script kiddies are auto-

ated tools.These tools have specific user agents and signatures. Hence,

t’s very easy to identify and catch. We used this as a metric for predic-

ion. We represented traffic from user agents with 𝜋

𝑖𝑣𝑒 − 𝑇 𝑟𝑎𝑓 𝑓 𝑖𝑐 ∑
𝑈𝑠𝑒𝑟 − 𝐴𝑔𝑒𝑛𝑡𝑠

+

𝑇 𝑟𝑎𝑖𝑛𝑖𝑛𝑔− 𝐷𝑎𝑡𝑎 ∑
𝑈𝑠𝑒𝑟 − 𝐴𝑔𝑒𝑛𝑡𝑠

=

𝑡𝑖𝑚𝑒 =∞∑
𝑡𝑖𝑚𝑒 =0

𝜋 (25)

.1.7. Brute force

The process of making multiple synchronized attempts primarily to

reak authentication can be a perfect metric for prediction. Hack at-

empts made from particular IP or user identification token can be anal-

sed to find out the crux of incoming traffic and the rate of flow of

ncoming traffic.

∞

0
(𝐵𝐹) =

∑
𝑡𝑟𝑎𝑓 𝑓 𝑖𝑐

(𝑝𝑎𝑦𝑙𝑜𝑎𝑑 + 𝑓𝑢𝑧𝑧𝑖𝑛𝑔) (26)

.1.8. Geo location

Incoming traffic from an unexpected geo locations with an unex-

ected rate is another ideal metric for predicting attacker traffic. This

an be understood from the fact that inbound traffic from a non-English

peaking nation onto a web portal serving English content is suspicious.

his idea is again an ideal metric for prediction along with other metrics.

e are calculating this metric as shown below:

= ∫𝑎 = 𝑙𝑖𝑣𝑒

𝐼𝑃 𝑎

𝐻𝑖𝑡𝑠
+ ∫

𝑙𝑖𝑣𝑒

𝑡𝑖𝑚𝑒 =0

𝐻𝑖𝑡𝑠

𝑇 𝑖𝑚𝑒
(27)

.2. Random forest

Among numerous Machine Learning algorithms available, Random

orests (RF) suits our requirements the best than any other. The prime

otive behind selecting Random Forest is the idea of deciding for a par-

icular user. This decision is based on the fact that we have multiple

etrics which would facilitate the decision-making process with a ran-

om forest algorithm. This decision is administered by the Classification

R. Ranjan and S.S. Kumar High-Confidence Computing 2 (2022) 100034

a

a

(

t

(

w

w

f

𝑓

3

(

𝑏

3

t

𝑏

D

𝐷

3

t

a

a

𝑇

3

i

i

m

𝑇

∫

3

T

[∑

w

n

3

D

o

p

i

o

l

𝑐

Algorithm 1: Application Log Parser (ALP).

Input : Data from Application Server Logs

Output : Parsed data in csv based on metrics supplied

𝑙𝑖𝑣𝑒𝑑𝑎𝑡𝑎𝑠𝑡𝑟𝑒𝑎𝑚 1 ← 𝑎𝑐 𝑐 𝑒𝑠𝑠𝑙𝑜𝑔𝑠

𝑙𝑖𝑣𝑒𝑑𝑎𝑡𝑎𝑠𝑡𝑟𝑒𝑎𝑚 2 ← 𝑒𝑟𝑟𝑜𝑟𝑙𝑜𝑔𝑠

𝜃 ← (𝑙𝑖𝑣𝑒𝑑𝑎𝑡𝑎𝑠𝑡𝑟𝑒𝑎𝑚 1 + 𝑙𝑖𝑣𝑒𝑑𝑎𝑡𝑎𝑠𝑡𝑟𝑒𝑎𝑚 2) ; // Fetching live
traffic from web server ∑∞

𝑖 =0 ← 𝜃𝑙𝑖𝑣𝑒𝑑𝑎𝑡𝑎𝑠𝑡𝑟𝑒𝑎𝑚
𝑚 =0 ; // Collecting live data stream in

cache
𝑆 𝑡𝑜𝑟𝑎𝑔𝑒𝑆 𝑒𝑟𝑣𝑒𝑟 ←

∑𝑡ℎ𝑒𝑡𝑎

𝑖 =0 ; // Saving cached data in storage
server
𝜆 ← 𝑆 𝑡𝑜𝑟𝑎𝑔𝑒𝑆 𝑒𝑟𝑣𝑒𝑟

𝑗 = 𝑙𝑖𝑣𝑒𝑑 𝑎𝑡𝑎

𝑗=0 ; // Data reached analytics

server
𝑃 𝑎𝑟𝑠𝑒𝑟 ← 𝜆𝑑𝑎𝑡𝑎

𝑚

while (Parser Data) != 0) do

𝛾 ← 𝜆; // Data is passed to analytics algorithm
𝑜𝑢𝑡𝑝𝑢𝑡𝑓 𝑖𝑙𝑒 ← 𝛾

while (output file)!=0 do

verify contents; // verify data being written into
file
if (𝑐𝑜𝑛𝑡𝑒𝑛𝑡𝑠) ← 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 then

continue

exec function(output file); // Call execution
function to get desired metrics

else

break loop; // Exit from loop in case of error
exit

end

end

if (wait for live stream of data) then

wait for 5 seconds; // Wait in case of delay
recheck

exec function(output file); // Call execution function
to get desired metrics

else

error in configuration; // configuration error, so
exit program
break loop

exit
end

𝜄 ←

∑𝜃

𝑖 =0
return 𝜄

end

4

t

i

F

T

u

m

3

a

4

t

S

i
nd Regression approach. In the regression approach, the output vari-

ble in the regression is numerical (or continuous) and is categorical

or discrete) in classification. In our research, we focused on Classifica-

ion as we need Yes or No in prediction specifically 1 (Malicious) or 0

Legitimate). Since we needed output for our case to be in 1 or 0, RF

as the best available algorithm. This means, data can be categorical as

ell as numerical, so let’s define function approximation using mapping

unction (f), input variables (x), and output variables (y).

(𝑥) = 𝑦, ∀𝑥, 𝑦 ∈ 𝑉 𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 (28)

.2.1. Classification

Classification algorithms map function (f) from the input variables

a) to discrete and categorical output variables (b).

 =

{

1 , if Yes .

0 , otherwise. (No)
(29)

.2.2. Regression

Regression algorithms map function (f) from the input variables (a)

o numerical and continuous numerical output variables (b).

 =

{

𝜅 𝜅 ∈ 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 1 .
𝜖 𝜖 ∈ 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 2 . (30)

In equation below Data Set is derived from the raw Data set. This

ata set is used to obtain the training set and testing set.

𝑎𝑡𝑎𝑆𝑒𝑡 ← 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝐷𝑎𝑡𝑎𝐿𝑜𝑔 (31)

.3. Training set

A training set is a subset of the overall data set which is used to

rain a model. This data set is used to educate models based on metrics

bout how to make predictions. This would be the first attempt to teach

 model about metrics.

 𝑟𝑎𝑖𝑛𝑒𝑑𝑆𝑒𝑡 ⊂ 𝐷𝑎𝑡𝑎𝑆𝑒𝑡 (32)

.4. Testing set

A testing set is used to test the trained model. This is done to verify

f applied to check the working of training data. The prediction model

s put on trial before making it live. Also, TrainigSet would always be

uch larger than TestSet, 𝑇 𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑆𝑒𝑡 >> 𝑇 𝑒𝑠𝑡𝑆𝑒𝑡

 𝑒𝑠𝑡𝑆𝑒𝑡 ⊂ 𝐷𝑎𝑡𝑎𝑆𝑒𝑡 (33)

𝑇 𝑒𝑠𝑡

𝑇 𝑟𝑎𝑖𝑛𝑖𝑛𝑔

𝑃 𝑀

=

∑
𝑇 𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑆𝑒𝑡 +

∑
𝑇 𝑟𝑎𝑖𝑛𝑒𝑑𝑆𝑒𝑡 (34)

.5. Prediction

Once the training set of data is ready, it is fed to the testing phase.

his leads to prediction based on training data. We used R-Studio

19] for the prediction.

𝑙𝑒𝑓 𝑡 (𝑦 𝑖) − (𝑦 𝐿 ∗) 2 +

∑
𝑟𝑖𝑔ℎ𝑡 (𝑦 𝑖) − (𝑦 𝑅 ∗) 2 (35)

here yL ∗ = mean y-value for left node yR

∗ = mean y-value for right

ode

.6. Log parser

Log parser is used to parse application-layer logs to be fed into the

ata Analytics platform. Raw logs are fed to log parser which churns

ut all the necessary parameters of log into CSV format. Any ordinary

arser would do this work with some customization. The same is shown

n the Fig. 1 below as well. Also, in Algorithm 1 ALP explain the process

f parsing logs for Big Data Analytics. We took different metrics from

ive logs and they were fed into our proposed mechanism.
𝑠𝑣 ← 𝐿𝑜𝑔𝑃 𝑎𝑟𝑠𝑒𝑟 ← 𝑅𝑎𝑤𝐷𝑎𝑡𝑎 (36) a

5
. Performance evaluation

The algorithm below parse the logs from Web Server and convert

hem into a CSV file which can be easily processed to run data analyt-

cs solutions Algorithm 1 . After CSV is obtained, it is fed to Execution

unction Algorithm 2 which yields parsed dataset as per the metrics.

his dataset is used to create a Decision Tree that yields nodes with val-

es wither 0 or 1. We then calculate ROC AUC scores using scikit learn.

etrics.roc_auc_score function [20] . Finally, Random Forest Algorithm

 is used based on metrics to give the final result of prediction (Tables 2

nd 3).

.1. Numerical settings

We used Magento Software [21] and established the entire infras-

ructure on AWS cloud. We have used the Pandas package in Python &

ci-Kit [22] for Machine Learning. This setup has been hosted on an EC2

nstance of AWS cloud with a Security Group open to public internet on

ll ports.

R. Ranjan and S.S. Kumar High-Confidence Computing 2 (2022) 100034

Algorithm 2: Execution Function Algorithm.

Input : Data fed into Execution Function

Output : Data Parsed as per metrics

exec(CSV) ← ALP(𝜄)Select X, Where, 𝑥 ∈ 𝑚 , x << m,

𝑚 ∈ 𝑡𝑜𝑡𝑎𝑙𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 , x ∈ selected no. of

features 𝑑 ← (
∑13

𝑚 =1 𝑚𝑒𝑡𝑟𝑖𝑐𝑠) 𝐷 𝑎 ← d, d ∀ Nodes; // calculate the
node d using the best split point
𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 0 ; // Total number of daughters
𝑎 = 0 ; // Variable topass daughter nodes in Random
Forest
while (i ≤ 𝐷 𝑎) do

d=BestSplit ← i; // i represents Nodes
return d, Where d ∈ DaughterNodes

𝑖 = 𝑖 + 1 ; // Split nodes into daughter nodes using
best split
𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1 ; // number of nodes has been
reached

end

if (a ≤ counter) then

RandomForest ← d

𝑎 = 𝑎 + 1
else

break loop

end

exit

Algorithm 3: Random Forest Application Algorithm (RFAA).

Input : Data Set from Decision Tree

Output : Output in Numerical values of 0 and 1 ∑𝑁𝑜𝑑𝑒 = 𝑛
𝑖 =0 Π(𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑇 𝑟𝑒𝑒) ← 𝑅𝑎𝑛𝑑𝑜𝑚𝐹 𝑜𝑟𝑒𝑠𝑡𝑇 𝑟𝑒𝑒 ←

𝑅𝑎𝑛𝑑𝑜𝑚𝐹 𝑜𝑟𝑒𝑠𝑡𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑟 ; // Multiple Decision Trees
constitutes a Random Forest
𝑇 𝑟𝑒𝑒 ∈ 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑇 𝑟𝑒𝑒𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑟𝑚𝑜𝑑𝑒𝑙 ←

𝑅𝑎𝑛𝑑𝑜𝑚𝐹 𝑜𝑟𝑒𝑠𝑡𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑟 (𝑛 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 = 100 , 𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝 =

𝑇 𝑟𝑢𝑒, 𝑚𝑎𝑥 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 =

′ 𝑠𝑞𝑟𝑡 ′) 𝑇 𝑟𝑎𝑖𝑛𝑖𝑛𝑔 ← 𝑇 𝑟𝑒𝑒 𝑇 𝑟𝑎𝑖𝑛𝐷𝑎𝑡𝑎 ; // Training
Data for Tree
Γ ← (𝑚𝑜𝑑𝑒𝑙.𝑓 𝑖𝑡)Γ𝑡𝑟𝑎𝑖𝑛 ← 𝑚𝑜𝑑𝑒𝑙.𝑓 𝑖𝑡 (𝑡𝑟𝑎𝑖𝑛, 𝑡𝑟𝑎𝑖𝑛 𝑡𝑎𝑏𝑙𝑒 ∗) ; // Model is
ready to make predictions on the testing data
𝑃 𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 ← Γ𝑃 𝑟𝑒𝑑 𝑖𝑐𝑡𝑖𝑜𝑛 𝐶 𝑙𝑎𝑠𝑠 =

Γ.𝑝𝑟𝑒𝑑 𝑖𝑐𝑡 (𝑡𝑒𝑠𝑡.𝑑 𝑎𝑡𝑎) 𝑃 𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐶 𝑙𝑎𝑠𝑠 = Γ.𝑝𝑟𝑒𝑑 𝑖𝑐𝑡 (𝑡𝑒𝑠𝑡.𝑑 𝑎𝑡𝑎)[∶
, 1] 𝑚𝑒𝑡𝑟𝑖𝑐𝑠 ← 𝑟𝑜𝑐 _ 𝑎𝑢𝑐 _ 𝑠𝑐𝑜𝑟𝑒 (𝑦, 𝑦 _ 𝑝𝑟𝑒𝑑, 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = 𝑁𝑜𝑛𝑒) ; // Compute
Area Under the Receiver Operating Characteristic Curve
(ROC AUC) from prediction scores
𝑟𝑜𝑐 𝑣𝑎𝑙𝑢𝑒 ← 𝑟𝑜𝑐 _ 𝑎𝑢𝑐 _ 𝑠𝑐𝑜𝑟𝑒 (𝑡𝑒𝑠𝑡.𝑑 𝑎𝑡𝑎, 𝑃 𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐶 𝑙𝑎𝑠𝑠) 𝐹 𝑒𝑎𝑡𝑢𝑟𝑒 ←

𝑚𝑒𝑡𝑟𝑖𝑐(𝑥) , 𝑝𝑎𝑛𝑑𝑎𝑠 ; // pandas module in python
Θ ← 𝑝𝑎𝑛𝑑𝑎𝑠. 𝐷𝑎𝑡𝑎𝐹 𝑟𝑎𝑚𝑒 (𝑄, 𝐼, 𝑆, 𝑉) ; // cleansed data set
passed to data frame function in pandas
Θ.ℎ𝑒𝑎𝑑() ← 1∕0 Where, 𝑄 = 𝐿𝑖𝑠𝑡 (𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑑𝑎𝑡𝑎𝑐𝑜𝑙𝑢𝑚𝑛𝑠) 𝐼 =

𝑚𝑜𝑑𝑒 (𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒) 𝑆 = 𝑠𝑜𝑟𝑡 𝑣 𝑎𝑙𝑢𝑒𝑠𝑉 =

𝑆(𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐 𝑒, 𝑎𝑠𝑐 𝑒𝑛𝑑 𝑖𝑛𝑔 = 𝐹 𝐴𝐿𝑆𝐸) if △ ← Θ.ℎ𝑒𝑎𝑑(1)) then

print Malicious

Report to Dashboard

else
print Legitimate

end

4

Table 2

Data Processing Hardware Re-

quirements.

Configuration Specifications

Memory 2GB

Build Server 2GB

Web Node 1GB

DB 30GB

MySQL 30GB

Cores 64

Table 3

Hardware Configuration of Web Server.

Processor OS HDD Memory SSD

8 Ubuntu 16.04 250GB 16GB NO

8 CentOS 7.1 200GB 24GB NO

4 CentOS 7.1 100GB 8GB Yes

16 CentOS 7.1 100GB 16GB Yes

Table 4

Data Set Size.

Window Size (in GB) Number of Samples

Day 1-5 0 0

Day 6-10 4.8 1689001

Day 11-15 5.2 1865189

Day 16-20 3.4 1421943

Day 21-25 4.1 1541412

Day 26-30 7.2 1992817

Day 31-35 5.7 1911124

Total 29.6 10421486

4

t

fi

6

w

M

2

E

t

d

s

r

o

4

p

T

t

m

3

t

t

S
.1.1. Practical setup

• Set up Website for 35 days on the internet

• Advertise its presence in the Hacker community

• Advertise juicy information content or bug bounty to lure attackers

• Make a realistic web portal and not some honeypot or vulnerable

webserver
6
• Web server framework is available at disposal to use and they need

to be configured

• We used AWS for setting up the LAMP stack and hosting our web

portal

• We would be logging all the hits in DB

(PostgreSQL/MySQL/MongoDB)

• Projection would be derived from this data

.1.2. Experimental setup

Setting up experiment required deployment of a live web portal on

he internet which should be vulnerable, so it can attract malicious traf-

c. To prepare a setup for live traffic, we used Linux Ubuntu 16.04

4-bit, Apache Web Server, MySQL DB, and Magento framework [21] ,

hich is an e-commerce platform written in PHP. We intentionally made

agento framework vulnerable with OWASP Top 10 [23] and SANS Top

5 [24] vulnerabilities. This setup was hosted on the Internet with AWS

lastic IP and was made publicly accessible on the internet. The idea was

o implement a Honeypot-like application that would yield necessary

ata for the completion of research work. Idea behind this experimental

etup was to invite hackers and users to browse on our application and

ecord their usage pattern based on the clicks. Component level diagram

f deployed architecture is shown below in Fig. 2 .

.2. Results

The results are obtained based on the algorithms designed in the pro-

osed scheme.Live traffic is captured and passed to ALP Algorithm 1 .

his algorithm provides us parsed data as per specific needs as input

o Execution Function Algorithm 2 . This algorithm provides CSV as per

etrics. This CSV is inserted as input for Random Forest Algorithm(RFA)

 and the random forest is generated. As shown in Table 4 which depicts

he size of the data set and the number of samples which essentially con-

ains the logs which were analyzed to fetch the outcome of this research.

o in our computation approx. 10 million lines of application-layer logs

R. Ranjan and S.S. Kumar High-Confidence Computing 2 (2022) 100034

Fig. 2. Setting up Experimental E-Commerce Portal.

Fig. 3. Output Comparison of Algorithms.

w

s

c

4

s

o

t

t

O

b

4

b

m

t

F

ere parsed and processed. The first five days are not counted to make

ure that we get a cooling period before the site gets to know that it

ontains vulnerabilities in the community.

.2.1. Makespan

A comparison of multiple regression approaches was made and it was

een that the Random Forest Algorithm has the best results. We found

ut that as dataset content increases, time delay decreases. This means

hat once the training set has completed processing, and processing of

esting set takes place, time delay starts decreasing as shown in Fig. 3 .
7
nce maturity is reached a constant delay is there for live prediction

ut it’s negligible and can be ignored.

.2.2. Execution time of prediction

Execution time is with a delay of few seconds for live traffic in the

eginning. As the system matures, this execution time is reduced to its

inimum. Among multiple algorithms compared, Random Forest stood

all and ahead of all other model algorithms and the same is depicted in

ig. 4 .

R. Ranjan and S.S. Kumar High-Confidence Computing 2 (2022) 100034

Fig. 4. Workflow Time.

Fig. 5. Impact of Training Data.

4

a

t

d

4

i

r

i

4

a

a

o

b

w

b

4

t

o

s

m

t

5

m

A
.2.3. Workflow completion

As evident from Fig. 5 , an evident 70% accuracy was achieved. This

ccuracy was obtained when Algorithm 3 was used and the maturity of

he model was reached. This model was slowly maturing and as training

ata kept on increasing so does the accuracy of prediction.

.2.4. Throughput

The process of Data Analytics and Machine Learning is a resource-

ntensive process but the outcome of resource utilization has a far-

eaching outcome.As the system model matures,so does its throughput

ncreases. As evident from Fig. 6 .

.3. Unexpected outputs

Since Data processing is a task that is prone to outputs which is not

n expected outcome. In Random Forest Algorithm these concerns are

ddressed. Since output was 1 for positive results and 0 for negative,

utput was shown clearly in Fig. 7 . Our model clearly distinguished
8
etween legitimate and malicious traffic based on IP and UIT. There

ere instances where predictions were wrong as shown in the figure

elow as colors mismatch.

.4. Network traffic

Internet traffic is not only restricts the HTTP/HTTPS but other pro-

ocols even for a web application. In our experimental setup we have

bserve that SSH, TCP/UDP, DNS, etc. protocols being actively used as

hown in Fig. 8 . This shows effectiveness and coverage of our experi-

ent as we captured almost all forms of internet protocols and attack

argeting those protocols.

. Conclusion

In this paper, we propose a novel technique for the prediction of

alicious users from web application traffic. We have applied Big Data

nalytics to analyze huge amounts of data that would be generated by

R. Ranjan and S.S. Kumar High-Confidence Computing 2 (2022) 100034

Fig. 6. Comparison of different Prediction Strategies.

Fig. 7. Data Concentration.

a

a

fi

i

d

o

m

s

p

b

f

l
 public e-commerce website. We have hosted a website on the internet

nd it was thrown open for public access for fifty days with peak traf-

c for thirty days. The logs have been generated in the real-time which

s used to predict malicious users. Once data is analyzed we feed this

ata to the Random Forest algorithm which results in Yes or No based

n the training data set provided to it. Training data set were prepared
9
anually by analyzing the big data. This training data set was crafted in

uch a way that all the metrics for prediction were covered. Final results

redicted malicious users with 65-70% accuracy. The entire process has

een done in real-time with live data flowing in continuously. In the

uture, we would aim to obtain 90% accuracy and reduce resource uti-

ization as well as a time delay to almost zero. Also, we plan to work on

R. Ranjan and S.S. Kumar High-Confidence Computing 2 (2022) 100034

Fig. 8. Types of Incoming Traffic.

i

s

a

D

i

t

R

mplementing Artificial Intelligence (AI) and remove the need for any

upervision in ML. Finally, we would explore if we can implement this

pproach at Network and Transport Layer data.

eclaration of Competing Interest

The authors declare that they have no known competing financial

nterests or personal relationships that could have appeared to influence

he work reported in this paper.

eferences

[1] J. Potter, What is a lamp stack?, 2018. [Online]. Available: https://www.

liquidweb.com/kb/what-is-a-lamp-stack/

[2] Amazon Web Services, Online, AWS [Online]. Available: https://aws.amazon.com ,

2006.

[3] M. Abramson , D. Aha , User authentication from web browsing behavior, in: The

Twenty-Sixth International FLAIRS Conference, 2013 .

[4] E. Shi , Y. Niu , M. Jakobsson , R. Chow , Implicit authentication through learning

user behavior, in: International Conference on Information Security, Springer, 2010,

pp. 99–113 .

[5] A. Al-Khazzar , N. Savage , Graphical authentication based on user behaviour, in:

2010 International Conference on Security and Cryptography (SECRYPT), IEEE,

2010, pp. 1–4 .

[6] M. Frank , R. Biedert , E. Ma , I. Martinovic , D. Song , Touchalytics: on the applicability

of touchscreen input as a behavioral biometric for continuous authentication, IEEE

Trans. Inf. ForensicsSecur. 8 (1) (2012) 136–148 .

[7] M. Pusara , C.E. Brodley , User re-authentication via mouse movements, in: Proceed-

ings of the 2004 ACM Workshop on Visualization and Data Mining for Computer

Security, 2004, pp. 1–8 .

[8] F. Bergadano , D. Gunetti , C. Picardi , User authentication through keystroke dynam-

ics, ACM Trans. Inf. Syst. Secur.(TISSEC) 5 (4) (2002) 367–397 .

[9] K. Moritz , S.S. Aultman , J.J.A. Campbell , D. Casillas , J.E. Neuse , S.T. Alonzo ,

T.B. Buckingham , G.C. Fernandez , M.K. Mortensen , Behavioral Profiling Method and

System to Authenticate a User, US Patent 9,185,095, 2015 .

[10] Y. Zhauniarovich , I. Khalil , T. Yu , M. Dacier , A survey on malicious domains detec-

tion through DNS data analysis, ACM Comput. Surv. (CSUR) 51 (4) (2018) 1–36 .
10
[11] Z. Yang , L. Wang , X. Song , Secure model based on multi-cloud for big data stor-

age and query, in: 2016 International Conference on Advanced Cloud and Big Data

(CBD), IEEE, 2016, pp. 207–214 .

[12] L. Liu , Security and privacy requirements engineering revisited in the big data era,

in: 2016 IEEE 24th International Requirements Engineering Conference Workshops

(REW), IEEE, 2016, p. 55 .

[13] A. Al-Shomrani , F. Fathy , K. Jambi , Policy enforcement for big data security, in: 2017

2nd International Conference on Anti-Cyber Crimes (ICACC), IEEE, 2017, pp. 70–74 .

[14] J.-H. Lee , Y.S. Kim , J.H. Kim , I.K. Kim , K.-J. Han , Building a big data platform for

large-scale security data analysis, in: 2017 International Conference on Information

and Communication Technology Convergence (ICTC), IEEE, 2017, pp. 976–980 .

[15] R. More , A. Unakal , V. Kulkarni , R. Goudar , Real time threat detection system in

cloud using big data analytics, in: 2017 2nd IEEE International Conference on Recent

Trends in Electronics, Information & Communication Technology (RTEICT), IEEE,

2017, pp. 1262–1264 .

[16] S. Shiva , S. Roy , D. Dasgupta , Game theory for cyber security, in: Proceedings of the

Sixth Annual Workshop on Cyber Security and Information Intelligence Research,

ACM, 2010, p. 34 .

[17] T.T. Bhavani , M.K. Rao , A.M. Reddy , Network intrusion detection system using ran-

dom forest and decision tree machine learning techniques, in: First International

Conference on Sustainable Technologies for Computational Intelligence, Springer,

2020, pp. 637–643 .

[18] I. Marathon Studios, Abuseipdb, 2019, [Online]. Available:

https://www.abuseipdb.com

[19] community.rstudio.com, R studio crash course, 2019[Online]. Available:

https://rstudio.com

[20] L. Buitinck , G. Louppe , M. Blondel , F. Pedregosa , A. Mueller , O. Grisel , V. Niculae ,

P. Prettenhofer , A. Gramfort , J. Grobler , R. Layton , J. VanderPlas , A. Joly , B. Holt ,

G. Varoquaux , API design for machine learning software: experiences from the scik-

it-learn project, in: ECML PKDD Workshop: Languages for Data Mining and Machine

Learning, 2013, pp. 108–122 .

[21] M. software, How to get the magento software, 2019[Online]. Available:

https://devdocs.magento.com/

[22] SciKit, Team scikit, 2019[Online]. Available: https://scikit-learn.org/stable/

[23] OWASP, Owasp top ten, 2017. [Online]. Available: https://owasp.org/www-

project-top-ten/

[24] SANS, 2020 cwe top 25 most dangerous software weaknesses, 2020[Online]. Avail-

able: http://cwe.mitre.org/top25/archive/2020/2020 .

https://www.liquidweb.com/kb/what-is-a-lamp-stack/
https://aws.amazon.com
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0003
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0003
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0003
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0004
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0004
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0004
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0004
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0004
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0005
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0005
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0005
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0006
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0006
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0006
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0006
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0006
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0006
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0007
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0007
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0007
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0008
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0008
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0008
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0008
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0009
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0009
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0009
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0009
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0009
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0009
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0009
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0009
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0009
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0009
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0010
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0010
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0010
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0010
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0010
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0011
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0011
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0011
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0011
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0012
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0012
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0013
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0013
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0013
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0013
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0014
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0014
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0014
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0014
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0014
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0014
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0015
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0015
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0015
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0015
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0015
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0016
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0016
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0016
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0016
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0017
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0017
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0017
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0017
https://www.abuseipdb.com
https://rstudio.com
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0020
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0020
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0020
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0020
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0020
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0020
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0020
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0020
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0020
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0020
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0020
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0020
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0020
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0020
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0020
http://refhub.elsevier.com/S2667-2952(21)00024-6/sbref0020
https://devdocs.magento.com/
https://scikit-learn.org/stable/
https://owasp.org/www-project-top-ten/
http://cwe.mitre.org/top25/archive/2020/2020

	User behaviour analysis using data analytics and machine learning to predict malicious user versus legitimate user
	1 Introduction
	1.1 Motivation
	1.2 Research contribution of this work
	1.3 Organization

	2 System model and problem formulation
	2.1 Resources
	2.1.1 Importance
	2.1.2 Missing value replacement for the training set
	2.1.3 Missing value replacement for the test set
	2.1.4 Unsupervised learning
	2.1.5 Balancing prediction error
	2.1.6 Prediction accuracy

	3 Proposed scheme
	3.1 Metrics
	3.1.1 Time
	3.1.2 Fuzzing
	3.1.3 Timestamp
	3.1.4 Payloads
	3.1.5 Malicious reputations
	3.1.6 User agents
	3.1.7 Brute force
	3.1.8 Geo location

	3.2 Random forest
	3.2.1 Classification
	3.2.2 Regression

	3.3 Training set
	3.4 Testing set
	3.5 Prediction
	3.6 Log parser

	4 Performance evaluation
	4.1 Numerical settings
	4.1.1 Practical setup
	4.1.2 Experimental setup

	4.2 Results
	4.2.1 Makespan
	4.2.2 Execution time of prediction
	4.2.3 Workflow completion
	4.2.4 Throughput

	4.3 Unexpected outputs
	4.4 Network traffic

	5 Conclusion
	Declaration of Competing Interest
	References

